e2v CCD and CMOS sensors and systems designed for astronomical applications

Paul Jorden, Paul Jerram, Doug Jordan, Jérôme Pratlong, Mark Robbins

e2v

SPIE, Edinburgh, 26 June 2016, Conf. 9915-3

WE PARTNER WITH OUR CUSTOMERS TO IMPROVE, SAVE AND PROTECT PEOPLE’S LIVES
An update of recent sensors and systems

e2v designs and manufactures an increasing suite of CMOS imagers for high performance use

1. CMOS Sensors achieve maturity
 • Custom Backthinned CMOS sensors for ground-based astronomy
 • Custom CMOS sensors for space use
 • Standard CMOS sensors
 • CMOS developments

2. EM CCDs
 • Standard L3|Vision sensors
 • Custom sensors for astronomy & science

3. Precision System assemblies
 • The WUVS space sensor system
 • KMTNet focal planes
 • The J-PAS OAJ Cryocam system

4. Summary
CMOS detectors-1

CIS113 (Vega)

Developed for the TAOS-II project. Development complete; production of 40-off in progress

Number of pixels	1920 (H) × 4608 (V)
Pixel size | 16.0 μm square
Image area | 73.73m × 30.72 mm
Output ports | 8 (REF and SIG each)
Package size | 82.39 mm × 31.7 mm
Package format | 76 pin ceramic PGA attached to invar block
Focal plane height | 14.0 mm
Flatness | < 30 μm (peak - valley)
Conversion gain | 75 μV/e-
Readout noise | 3 e− at 2 MP/s per ch.
Maximum pixel rate | 2 MP/s per channel
Maximum charge | 22,000 e− per pixel
Dark signal | 70 e−/pixel/s (at 21 °C)
Frame rate | 2 fps (full frame mode)
20 fps (multiple ROI’s)

Paper by Jérôme Pratlong, 9915, Tues am, S8
CMOS detectors-2

CIS112 (NGSD)

Developed for Adaptive Optics on large telescopes.

- High frame rate and very low noise
- Backthinned and red sensitive
- Precursor of 1600 X 1600 sensor

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>880 X 840</td>
</tr>
<tr>
<td>Pixel size</td>
<td>24.0 µm square</td>
</tr>
<tr>
<td>Image area</td>
<td>21.12 mm × 20.16 mm</td>
</tr>
<tr>
<td>Output</td>
<td>Digital; multiple parallel ADCs</td>
</tr>
<tr>
<td>Package format</td>
<td>Ceramic PGA</td>
</tr>
<tr>
<td>Readout noise</td>
<td>< 3 e⁻</td>
</tr>
<tr>
<td>Variants</td>
<td>> 85% at 589 nm</td>
</tr>
<tr>
<td>Maximum charge per pixel</td>
<td>4,000 e⁻</td>
</tr>
<tr>
<td>Frame rate</td>
<td>> 700 fps</td>
</tr>
</tbody>
</table>

See paper by Mark Downing, 9915, Tues am, S8
CMOS detectors-3

Onyx EV76C664

- **Standard product with low noise**
- **Fully digital sensor with multiple modes**
- **Frontside illuminated with micro-lens**

Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>1280 X 1024 (1.3 Megapixel)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>10.0 µm square</td>
</tr>
<tr>
<td>Shutter modes</td>
<td>Global and Rolling</td>
</tr>
<tr>
<td>Output</td>
<td>8, 10, 12, 14 bit LVDS</td>
</tr>
<tr>
<td>Package format</td>
<td>Ceramic 67-pin PGA</td>
</tr>
<tr>
<td>Readout noise</td>
<td>6 e⁻ (min, depending on mode)</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td>Monochrome or sparse colour (with microlens)</td>
</tr>
<tr>
<td>Maximum charge</td>
<td>16,000 e⁻ per pixel</td>
</tr>
</tbody>
</table>

See e2v.com for datasheet
CMOS detectors-4
CIS115 (Sirius)

- Backthinned sensor with low read-noise
- Designed for space applications
- Planned for JANUS (Juice) ESA mission
- Being qualified for space use by end-2016
- Samples available; FMs to follow

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>1504(H) × 2000(V)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>7.0 µm square</td>
</tr>
<tr>
<td>Number of output ports (reset and signal pins)</td>
<td>4 pairs of analogue outputs</td>
</tr>
<tr>
<td>Package size</td>
<td>48.26 mm square</td>
</tr>
<tr>
<td>Package format</td>
<td>140 pin ceramic PGA</td>
</tr>
<tr>
<td>Flatness</td>
<td>< 10 µm (peak to valley)</td>
</tr>
<tr>
<td>Conversion gain</td>
<td>35 µV/e−</td>
</tr>
<tr>
<td>Readout noise</td>
<td>7 e− (Rolling shutter)</td>
</tr>
<tr>
<td>Maximum pixel data rate</td>
<td>8 MP/s per channel</td>
</tr>
<tr>
<td>Maximum charge per pixel</td>
<td>55,000 e−</td>
</tr>
<tr>
<td>Frame rate</td>
<td>Up to 10 Hz</td>
</tr>
<tr>
<td>Minimum time to read one line at 6·2 MP/s</td>
<td>66.25 µs</td>
</tr>
<tr>
<td>Frame rate at full resolution</td>
<td>Up to 7.5 fps</td>
</tr>
</tbody>
</table>
CMOS detectors-5

TDI CMOS development

Time-Delay-Integrate used for scanning space applications; eg GAIA uses TDI CCDs

- TDI CMOS offers digital architecture & low power
- Most promising technique is a CCD-like structure-
- Charge summation along track
- Good CTE after irradiation is important
- Small test devices made & tested
- Full sized device planned

See paper by F Mayer, IISW 2015 on e2v.com
CMOS detectors-6

CIS111 (MTG FCI)

- Example of imager used for earth observation-
- Offers higher frame rate and lower crosstalk than an equivalent CCD
- CIS111 to be used on Meteosat Third Generation Flexible Combined Imager
- 5 independent imager blocks with in-package filters
- Rhombus shaped pixels in outer blocks
- Optimised for good transfer through large pixels and low lag

CIS111 architecture
Custom test vehicle with 250 um square pixels
- Each pixel has 8 photodiodes with a common sense node
- Aims to optimise lag and Charge-Voltage-Factor
- 2.5 Me- peak signal; 84 dB dynamic range
- Designed for backthinning
- Test devices have been characterised
We illustrate selected EMCCDs
Internal electron gain allows sub-electron read-noise
Combined with backthinned spectral response for very high sensitivity
Several formats and sizes available

Standard (non EMCCDs) are not discussed in the presentation- since many are visible on e2v.com and have been discuss previously

2. EM CCDs
 • Standard L3Vision sensors
 • Custom sensors for astronomy & science
CCD sensors-1

CCD201

- Standard product
- 1024 X 1024 pixels; 13 µm pixels
- Larger format than CCD97 (512 X 512 pixels)
- Widely used for commercial applications
- Also useful for astronomy at low signal levels
- Sub-electron read noise
- Backthinned for high spectral response
- Inverted mode dark current

- Under evaluation for space use (NASA WFIRST Coronagraph)

See poster by Nathan Bush, 9904, Tues pm
CCD sensors-2

CCD282

- Largest EMCCD manufactured to date
- 4096 X 4096 pixel image area
- Split frame-transfer read-out with 8 outputs
- > 4 frames per second
- Sub-electron read-noise
- Backthinned for high Quantum Efficiency
- Very low levels of clock-induced charge
- Non-inverted operation at cryogenic temperatures
- Development is complete; sensors have been delivered

CCD sensors-3

CCD351

- Standard product, for commercial use
- L3Vision technology for sub-electron read-noise
- Video rate readout
- Backthinned spectral response
- In standard production

Typical Performance

<table>
<thead>
<tr>
<th>Image section</th>
<th>1024 x 1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>10 µm × 10 µm</td>
</tr>
<tr>
<td>Active image area</td>
<td>10.24 × 10.24 mm</td>
</tr>
<tr>
<td>Package size</td>
<td>22.86 × 28.00 mm</td>
</tr>
<tr>
<td>Amplifier responsiveness</td>
<td>3.5 µV/e–</td>
</tr>
<tr>
<td>Readout noise</td>
<td>< 1 e– (with EM gain)</td>
</tr>
<tr>
<td>Multiplication gain</td>
<td>100-1000 typical</td>
</tr>
<tr>
<td>Output data rate</td>
<td>37 MHz</td>
</tr>
<tr>
<td>Pixel charge storage</td>
<td>35 ke-/pixel</td>
</tr>
<tr>
<td>Dark signal (18°C)</td>
<td>100 e-/pixel/s</td>
</tr>
</tbody>
</table>

Package illustration (not final)
e2v develops sub-systems to complement its supply of sensors.

- Bespoke systems are optimised for each application and use common modules where appropriate.
- Performance of sensors combined with system can be guaranteed.

3. Precision System assemblies

- The WUVS space sensor system
 - KMTNet focal planes
- The J-PAS OAJ Cryocam system
World Space Observatory UV Spectrograph

- 115-310 nm range covered by three sensor channels
- Custom sealed vacuum cryostat enclosures for 9 year life
- with flight electronics (associated with RAL Space)
- UV optimised custom CCD272 operated at -100°C
- Components maintain alignment after shock & vibration of launch
- Design and manufacture underway
Precision System Assemblies-2
WUVS

Triple detector unit detector layout with camera electronics units

See Poster by Vladimir Panchuk, 9905, Sun pm
Korea Micro-lensing Telescope Network
3 telescopes each with its own camera; 350 mm focal plane; 340 MegaPixel each
Each camera had four CCD290 science sensors and four guide sensors; < 30 µm flatness
Focal planes are complete (e2v), operational and installed in cameras (by Ohio State University)

See Poster by Dae-Sik Moon, 9906, Mon pm. Also see previous paper Jorden et al, SPIE 2014
A 1.2 Gigapixel cryocam for use on the 2.5m OAJ telescope for the J-PAS survey. e2v has just completed this important commercially-supplied astronomical camera.
Table of key features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 mm focal plane diameter</td>
<td>-100°C operating temperature</td>
</tr>
<tr>
<td></td>
<td>Stable to +/- 0.5°C</td>
</tr>
<tr>
<td>27 µm peak-valley flatness</td>
<td>Measured at -100°C</td>
</tr>
<tr>
<td></td>
<td>Stable against flexure</td>
</tr>
<tr>
<td>14 science CCD290-99 sensors:</td>
<td>1.2 Gig pixels</td>
</tr>
<tr>
<td></td>
<td>9K X 9K sensors</td>
</tr>
<tr>
<td>8 wavefront sensors:</td>
<td>CCD44-82 FT</td>
</tr>
<tr>
<td></td>
<td>Custom packages</td>
</tr>
<tr>
<td>4 guide sensors:</td>
<td>CCD47-20 FT</td>
</tr>
<tr>
<td></td>
<td>Custom packages</td>
</tr>
<tr>
<td>Integrated electronics</td>
<td>224 science channels</td>
</tr>
<tr>
<td></td>
<td>< 5 e- read-noise at 400 kHz</td>
</tr>
<tr>
<td>Modular CCD drive units</td>
<td>Synchronized readout of science CCDs</td>
</tr>
<tr>
<td>Complete LN2 cooling system</td>
<td>Integrated vacuum system</td>
</tr>
<tr>
<td></td>
<td>Post-delivery support</td>
</tr>
<tr>
<td>Cold light baffle</td>
<td>High Quantum Efficiency</td>
</tr>
<tr>
<td></td>
<td>minimum reflection AR coat</td>
</tr>
</tbody>
</table>

See paper by Mark Robbins, 9908, Tues 28 June 2016, am, S8

And K Taylor et al, JPCAM, JAI vol 3, 2014
Summary

And some closing remarks

This paper is an update of e2v technology developments and products since:

• An increasing number of sensors are being developed using CMOS architectures
 Many of these are backthinned and offer low read-noise (comparable to CCDs)

• CCDs continue to be used in larger quantities and with greater heritage
 CCDs offer better red response in general (thicker silicon)

• e2v offers custom system solutions including cryogenic cameras and electronic modules to complement its supply of sensors- and with guaranteed performance

Thank you for your attention
WE PARTNER WITH OUR CUSTOMERS TO IMPROVE, SAVE AND PROTECT PEOPLE’S LIVES

OUR INNOVATIONS LEAD DEVELOPMENTS IN COMMUNICATIONS, AUTOMATION, DISCOVERY, HEALTHCARE AND THE ENVIRONMENT