e2V

e2v technologies

FEATURES

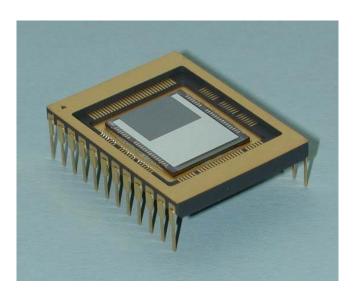
- 256 x 256 Pixel Image Area.
- 26 μm Square Pixels.
- Low Noise, High Responsivity Output Amplifier.
- 100% Active Area.
- Gated Dump Drain on Output Register.
- Low Dark Current

INTRODUCTION

This version of the CCD67 family of CCD sensors is a frame transfer imaging device with a single serial output register.

There are two low noise amplifiers in the readout register, one at each end. Charge can be made to transfer through either or both of the amplifiers by making the appropriate $R\varnothing$ connections. The readout register has a gate controlled dump drain to allow fast dumping of unwanted data.

The register is designed to accommodate 3 image pixels of charge.


The CCD67 is pin compatible with the CCD57 and the centre of the image area of the CCD67 is coincident with that of the CCD57.

Other variants of the CCD67 are available for applications with differing requirements. Designers are advised to contact e2v technologies should they be considering the use of CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency	/				. 5	MHz
Output responsivity					. 1.5	μV/e ⁻
Peak signal					450	ke-/pixel
Spectral range			200	_	1100	nm
Readout noise (1 MHz) .					12	e rms

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor

GENERAL DATA

Format

Image area pixels								268 (H) x 264 (V)
Active area pixels								256 (H) x 256 (V)
Storage area pixels								268 (H) x 264 (V)
Pixel size								26 x 26 μm
Number of output a	amı	olifi	ers					2
Number of underso	an	(se	rial) pi	xel	S		. 6 (each end)

Package

Package size						3	0.0	Χ	22.6	mm 6
Number of pins .										32
Inter-pin spacing									2.54	1 mm
Window material				t	emp	oor	ary	C	over	glass
Package type .					C	er	am	ic	DIL	array

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	300k	450k	-	e ⁻ /pixel
Peak output voltage (no binning)	_	0.9	-	V
Dark signal at 293 K (see note 2)	-	1700	4000	e ⁻ /pixel/s
Dynamic range (see note 3)	-	112 500:1	-	
Charge transfer efficiency (see note 4): parallel serial	- -	99.9999 99.9993	-	% %
Output amplifier responsivity	1.0	1.5	2.0	μV/e ⁻
Readout noise at 233 K (20 kHz) (see note 5)	-	4.0	6.0	rms e ⁻
Maximum readout frequency (see note 6)	-	-	5	MHz
Maximum vertical transfer frequency	-	-	2	MHz
Photo response non-uniformity (see note 7) (std. deviation)	-	3	5	% of mean
Dark signal non-uniformity (293 K) (see note 8)	-	425	1000	e ⁻ /pixel/s

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 233 and 253 K and $V_{\rm SS}$ +9.0 V. Dark signal at any temperature T (kelvin) may be estimated from:

$$Q_d/Q_{d0} = 1.14 \times 10^6 T^3 e^{-9080/T}$$

where Q_{d0} is the dark signal at T = 293 K (20 °C).

- 3. Dynamic range is the ratio of full-well capacity to readout noise measured at 233 K and 20 kHz readout speed.
- 4. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 5. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 10 μs integration period.
- 6. Readout at speeds in excess of 5 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed.
- 7. This is not quoted for the fibre-optic variant as it is affected by the fibre-optic.
- 8. Measured between 253 and 293 K, excluding white defects.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e^- at 233 K.

Slipped columns Are counted if they have an amplitude

greater than 200 e⁻.

Are counted when they have a signal **Black spots** level of less than 90% of the local mean

at a signal level of approximately half full-

well.

White spots

Are counted when they have a generation rate 10 times the specified maximum dark signal generation rate (measured between 253 and 293 K). The amplitude of white spots will vary in the same manner as dark current, i.e.:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

White column A column which contains at least 9 white

defects

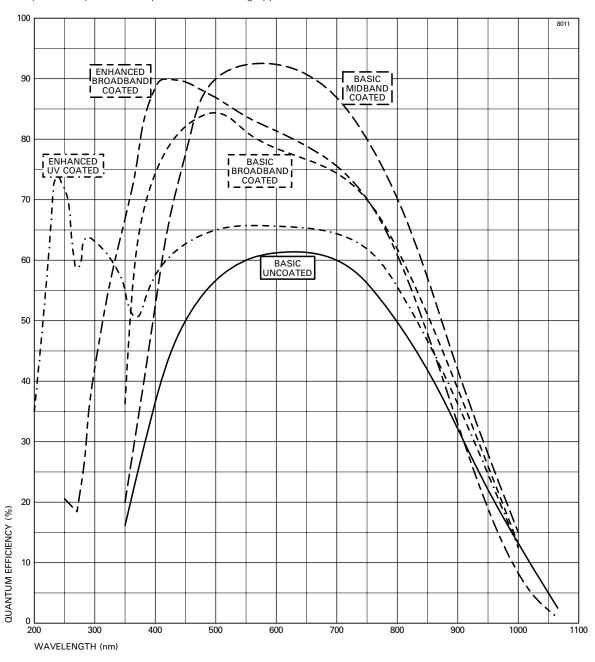
Black column A column which contains at least 9 black

defects.

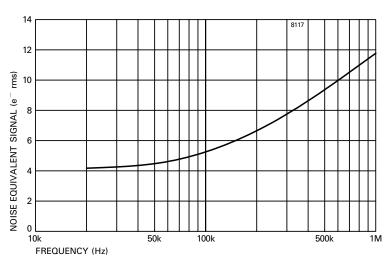
GRADE	0	1	2
Column defects: black or slipped white	0	1 0	4 0
Black spots	5	10	20
Traps > 200 e ⁻	1	2	5
White spots	5	10	15

Grade 5

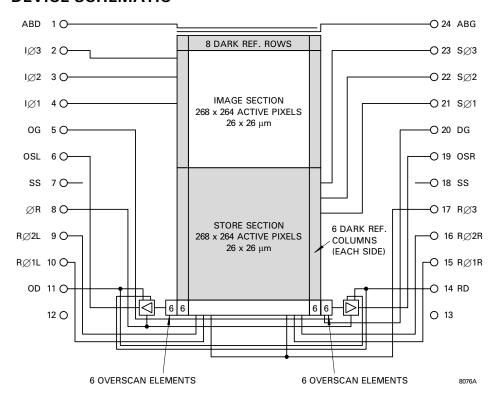
Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance parameters.


Minimum separation between

adjacent black columns 50 pixels


Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 253 K. The amplitude of white spots and columns will decrease rapidly with temperature.

TYPICAL SPECTRAL RESPONSE


The spectral response will depend on the cooling applied to the device.

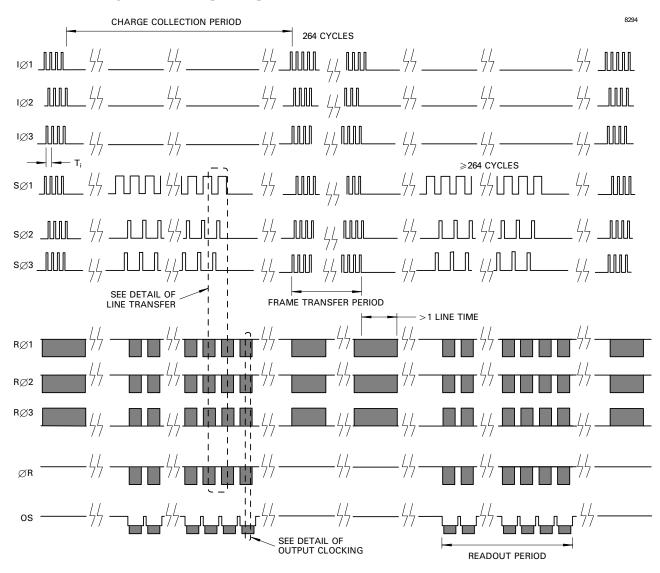
TYPICAL OUTPUT NOISE

DEVICE SCHEMATIC

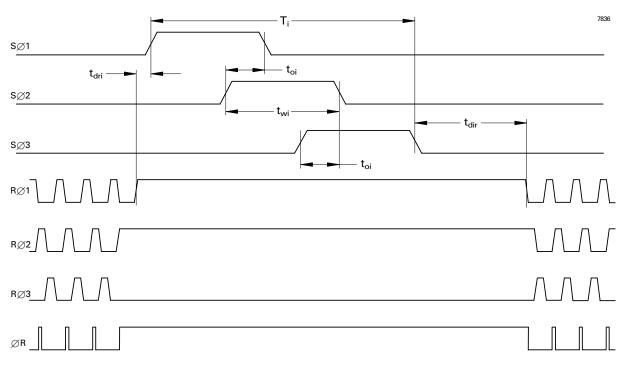
100004, page 4 © e2v technologies

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

					CLOCK HIG	MAXIMUM RATINGS	
PIN	REF	DESCRIPTION	(V typ.)	Min	Typical	Max	w.r.t. V _{ss}
1	ABD	Anti-blooming drain (see note 9)	n/a		V_{OD}		-0.3 to +25 V
2	IØ3	Image area clock, phase 3	0	8	12	15	± 20 V
3	IØ2	Image area clock, phase 2	0	8	12	15	<u>+</u> 20 V
4	IØ1	Image area clock, phase 1	0	8	12	15	<u>+</u> 20 V
5	OG	Output gate	n/a	1	3	5	<u>+</u> 20 V
6	OSL	Output transistor source (left amplifier)	n/a		see note 10)	-0.3 to +25 V
7	SS	Substrate	n/a	0	9.5	11	-
8	ØR	Reset pulse	0	8	12	15	<u>+</u> 20 V
9	RØ2L	Register clock, phase 2 (left section)	-2	8	10	15	<u>+</u> 20 V
10	RØ1L	Register clock, phase 1 (left section)	-2	8	10	15	<u>+</u> 20 V
11	OD	Output drain	n/a	27	29	31	-0.3 to +25 V
12	-	No connection	n/a		-		-
13	-	No connection	n/a		-		-
14	RD	Reset drain	n/a	15	18	21	-0.3 to +25 V
15	RØ1R	Register clock, phase 1 (right section)	-2	8	10	15	<u>+</u> 20 V
16	RØ2R	Register clock, phase 2 (right section)	-2	8	10	15	<u>+</u> 20 V
17	RØ3	Register clock, phase 3	-2	8	10	15	<u>+</u> 20 V
18	SS	Substrate	n/a	0	9.5	11	-
19	OSR	Output transistor source (right amplifier)	n/a		see note 10)	-0.3 to +25 V
20	DG	Dump gate (see note 11)	0	10	12	14	<u>+</u> 20 V
21	SØ1	Storage clock, phase 1	0	8	12	15	<u>+</u> 20 V
22	SØ2	Storage clock, phase 2	0	8	12	15	<u>+</u> 20 V
23	SØ3	Storage clock, phase 3	0	8	12	15	<u>+</u> 20 V
24	ABG	Anti-blooming gate (see note 9)	n/a	0	3	5	<u>+</u> 20 V

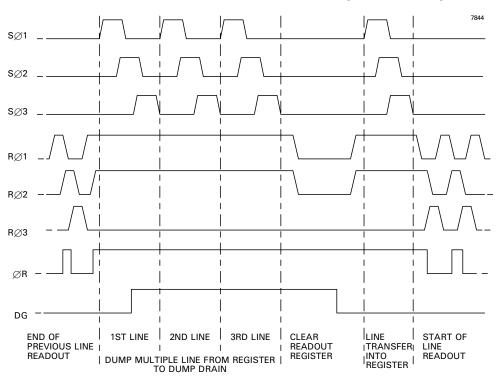

NOTES

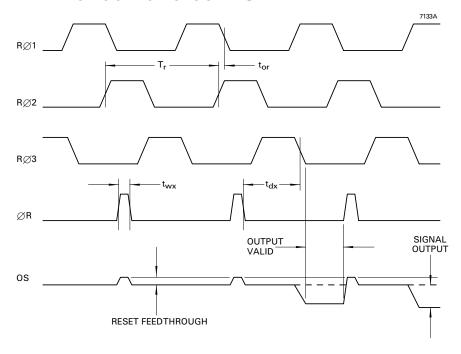
^{9.} Although anti-blooming is not incorporated, bias is still necessary.

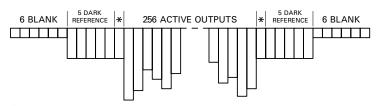

^{10. 3} to 5 V below OD. Connect to ground using a 2 to 5 mA current source or appropriate load resistor (typically 5 to 10 k Ω).

^{11.} This gate is normally low. It should be pulsed high for charge dump.

FRAME TRANSFER TIMING DIAGRAM


DETAIL OF LINE TRANSFER


DETAIL OF VERTICAL LINE TRANSFER (Single line dump)


DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)

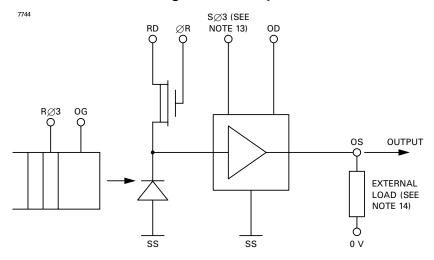
DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

^{* =} Partially shielded transition elements

8120

CLOCK TIMING REQUIREMENTS

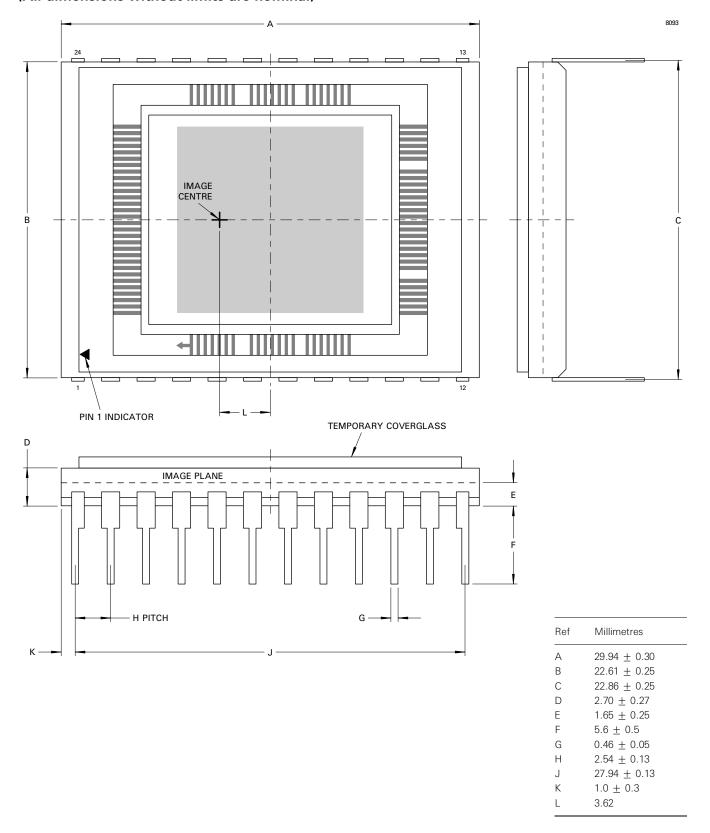

Symbol	Description	Min	Typical	Max	
T _{fi}	First frame transfer pulse width	100	150	see note 12	μs
T _{ti}	Frame transfer clock period	2	5	see note 12	μs
t _{wti}	Frame transfer image clock pulse width	1	2	$T_{ti}/3 + t_{oi}$	μs
T _i	Store clock period	25	50	see note 12	μs
t _{wi}	Image/store clock pulse width	8	16	see note 12	μs
t _{ri}	Image/store clock pulse rise time (10 to 90%)	0.03	0.1	0.2T _{ti}	μs
t _{fi}	Image/store clock pulse fall time (10 to 90%)	t _{ri}	0.1	0.2T _{ti}	μs
t _{oi}	Image/store clock pulse overlap	0.2	0.3	0.2T _{ti}	μs
t _{dir}	Delay time, S∅ stop to R∅ start	1	2	see note 12	μs
t _{dri}	Delay time, R∅ stop to S∅ start	1	1	see note 12	μs
T _r	Output register clock cycle period	200	1000	see note 12	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

12. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.

100004, page 8 © e2v technologies

OUTPUT CIRCUIT (Right-hand amplifier)



NOTES

- 13. The amplifier has a DC restoration circuit which is internally activated whenever SØ3 is high.
- 14. Not critical; can be a 2 to 5 mA constant current supply or an appropriate load resistor.

OUTLINE

(All dimensions without limits are nominal)

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.