e2V

e2v technologies

FEATURES

- 1024 by 1024 1:1 Image Format
- Image Area 13.3 x 13.3 mm
- Frame Transfer Operation
- 13 μm Square Pixels
- Symmetrical Anti-static Gate Protection
- High Speed Output Amplifiers
- 100% Active Area
- Shielded Anti-bloom Pixel Structure

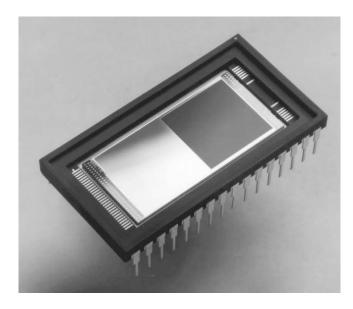
APPLICATIONS

- Spectroscopy
- Scientific Imaging
- Star Tracking
- Medical Imaging

INTRODUCTION

This version of the CCD48-20 is a back-face illuminated, frame transfer CCD sensor with high performance, high speed output amplifiers. The image area contains a full 1024 by 1024 pixels which are 13 μm square. The output register is split, allowing either or both of the two output amplifiers to be employed. Each amplifier is provided with a dummy output.

To provide reliable imaging in the presence of bright highlights, anti-blooming is incorporated. This is of the shielded anti-blooming type, in order to maintain quantum efficiency.


This version of the CCD48 is manufactured in standard NIMO format. This has the benefit of allowing faster vertical transfer rates than AIMO format.

Designers are advised to consult e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency				10	MHz
Output responsivity				2	$\mu V/e^-$
Peak signal				90	ke-/pixel
Dynamic range at 10 MHz .			25	500:1	
Spectral range		200	-	1100	nm
Readout noise at 10 MHz .				35	e- rms

CCD48-20 Back Illuminated High Performance NIMO CCD Sensor

GENERAL DATA

Format

Image area				13.3 x 13.3	mm
Active pixels (H)				. 1024	
(V)				. 1024	
Pixel size				13 x 13	μm
Storage area				13.3 x 13.3	mm
Pixels (H)				. 1024	
(∨)				. 1024	

Additional pixels are provided in both the image and storage areas for dark reference and over-scanning purposes.

Number of output amplifiers							2
Weight (approx, no window)				7.5	5		g

Package

Package size							2	22.7	' X	42.0	0 mm
Number of pins .											32
Inter-pin spacing										2.5	4 mm
Window material				qι	uart	Z C	or re	emo)Va	able	glass
Type							cer	am	ic	DIL	array

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	70	90	-	ke ⁻ /pixel
Peak output voltage (unbinned)	-	180	-	mV
Dark signal at 293 K (see notes 2 and 3)	-	20	40	ke ⁻ /pixel/s
Dynamic range (see note 4)	-	2500:1	-	
Charge transfer efficiency (see note 5): parallel serial		99.9999 99.9993	-	% %
Output amplifier responsivity (see note 3)	1.2	2.0	2.8	μV/e ⁻
Readout noise at 10 MHz (see note 6)	-	35	-	rms e ⁻ /pixel
Maximum readout frequency (see note 7)	-	10	-	MHz
Dark signal non-uniformity (std. deviation) (see notes 3 and 8)	-	2	4	ke ⁻ /pixel/s

Spectral Response at 268 K

		Minim	um Response (QI	≣)		Maximum	
Wavelength (nm)	Enhanced Process UV Coated	Enhanced Process Broadband Coated	Basic Process Mid-band Coated	Basic Process Broadband Coated	Basic Process Uncoated	Response Non-uniformity (1ஏ)	
300	45	-	-	-	-	-	%
350	45	50	15	25	10	5	%
400	55	80	40	55	25	3	%
500	60	80	85	75	55	3	%
650	60	75	85	75	50	3	%
900	30	30	30	30	30	5	%

The uncoated process is suitable for soft X-ray and EUV applications.

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode capacitances (measured at mid-clock level)

	Min	Typical	Max	
SØ/SØ interphase	-	3.5	-	nF
IØ/IØ interphase	-	3.5	=	nF
IØ/SS and SØ/SS	-	4.5	-	nF
RØ/RØ interphase	-	40	-	pF
RØ/(SS + OD)	-	60	-	pF
ØR/(SS)	-	10	-	pF
Output impedance at typical operating conditions	-	300	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 233 and 273 K and V_{SS} +9.0 V. Dark signal at any temperature T (kelvin) may be estimated from: $Q_d/Q_{d0} \,=\, 122 T^3 e^{-6400/T}$

where Q_{d0} is the dark signal at T = 293 K (20 °C).

- 3. Test carried out at e2v technologies on all sensors.
- 4. Dynamic range is the ratio of readout noise to full well capacity measured at 10 MHz readout speed.
- 5. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 6. Measured using correlated double sampling (CDS).
- 7. Readout at speeds in excess of 10 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed.
- 8. Measured between 233 and 273 K, excluding white defects.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity greater than 200 e⁻ at 243 K.

Slipped columns Are counted if they have an amplitude

greater than 200 e⁻.

Black spots Are counted when they have a signal level less than 80% of the local mean at a signal

level of approximately half full-well.

White spots Are counted when they have a generation rate 25 times the specified maximum dark

signal generation rate (measured between 233 and 273 K). The amplitude of white spots will vary in the same manner as dark

current, i.e.:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

White column A column which contains at least 21 white

defects.

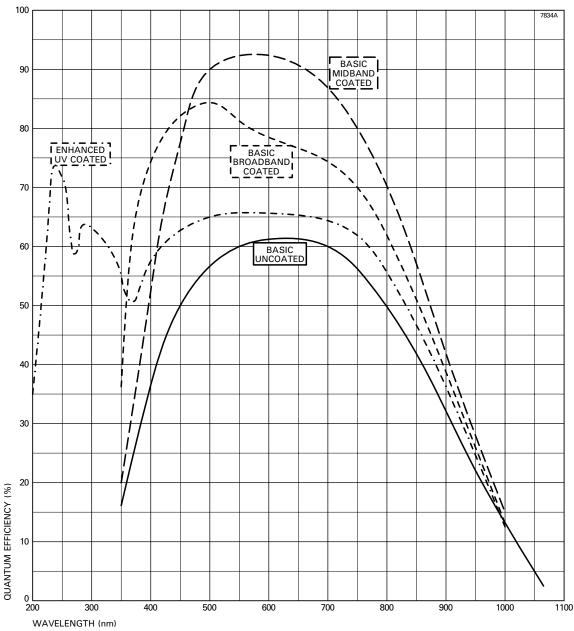
Black column A column which contains at least 21 black

defects.

GRADE	0	1	2
Column defects: black or slipped white	0	2 0	6 0
Black spots	50	100	200
Traps > 200 e ⁻	2	5	12
White spots	50	80	100

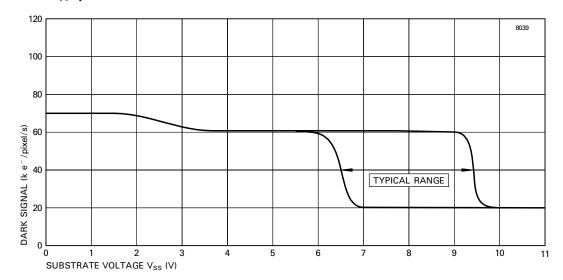
Grade 5

Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance

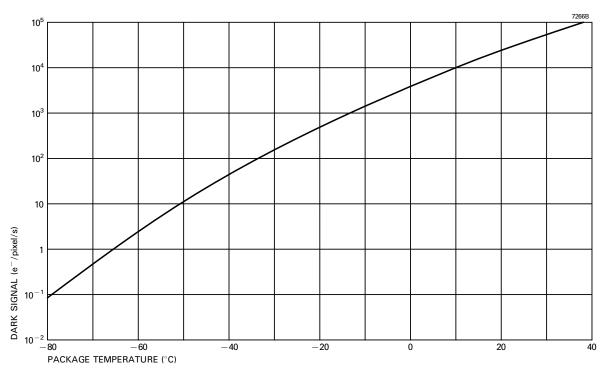

parameters.

Minimum separation between

adjacent black columns 50 pixels

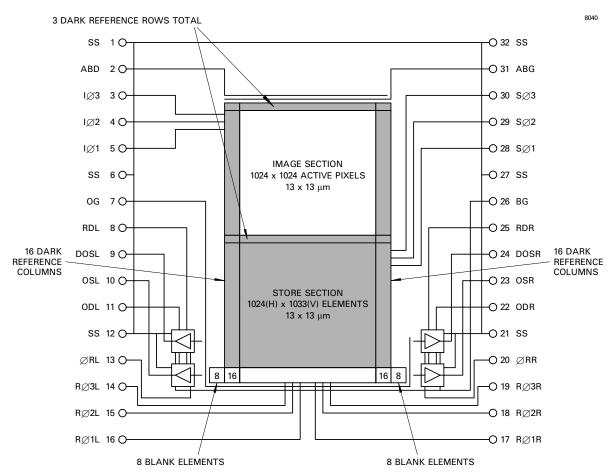

Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 233 K. The amplitude of white spots and columns will decrease rapidly with temperature.

TYPICAL SPECTRAL RESPONSE (No window)



100042, page 3 © e2v technologies

TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE (Two I \varnothing phases held low)



TYPICAL VARIATION OF DARK CURRENT WITH TEMPERATURE

DEVICE SCHEMATIC

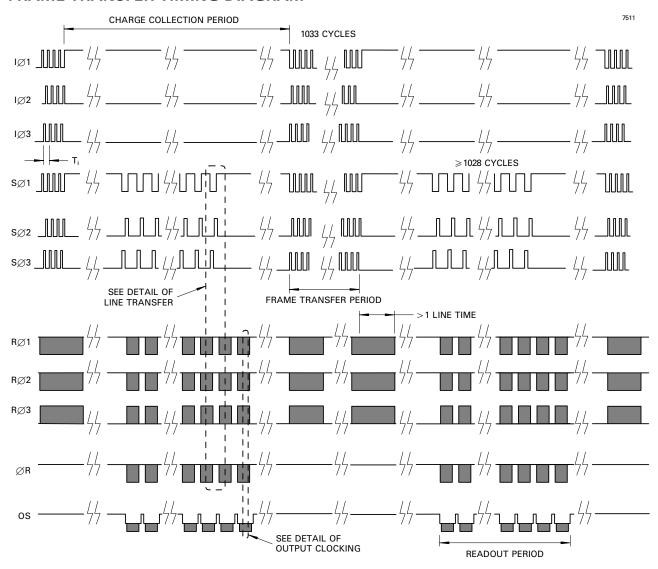
There is a total of 3 shielded rows as shown, but the nominal position of the image section may vary by \pm 1 row and \pm 1 column.

© e2v technologies 100042, page 5

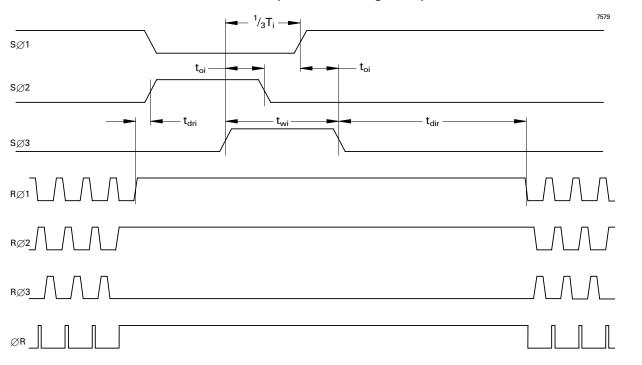
CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

				AMPLITU		MAXIMUM RATINGS		
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to V _{SS}		
1	SS	Substrate	0	9	10	-		
2	ABD	Anti-blooming drain	16	18	20	-0.3 to +25 V		
3	IØ3	Image area clock	8	12	15	<u>±</u> 20 V		
4	IØ2	Image area clock	8	12	15	<u>±</u> 20 V		
5	IØ1	Image area clock	8	12	15	±20 V		
6	SS	Substrate	0	9	10	-		
7	OG	Output gate	1	3	5	±20 V		
8	RDL	Reset transistor drain (left amplifier)	15	17	19	-0.3 to +25 V		
9	DOSL	Output transistor source (dummy)		-		-		
10	OSL	Output transistor source (left amplifier)		see note 10		-0.3 to +25 V		
11	ODL	Output transistor drain (left amplifier)	20	22	25	-0.3 to +35 V		
12	SS	Substrate	0	9	10	-		
13	ØRL	Output reset pulse (left amplifier)	8	12	15	±20 V		
14	RØ3L	Output register clock (left section)	8	12	15	<u>+</u> 20 V		
15	RØ2L	Output register clock (left section)	8	12	15	±20 V		
16	RØ1L	Output register clock (left section)	8	12	15	<u>+</u> 20 V		
17	RØ1R	Output register clock (right section)	8	12	15	±20 V		
18	RØ2R	Output register clock (right section)	8	12	15	±20 V		
19	RØ3R	Output register clock (right section)	8	12	15	±20 V		
20	ØRR	Output reset pulse (right amplifier)	8	12	15	±20 V		
21	SS	Substrate	0	9	10	-		
22	ODR	Output transistor drain (right amplifier)	20	22	25	-0.3 to +35 V		
23	OSR	Output transistor source (right amplifier)		see note 10		-0.3 to +25 V		
24	DOSR	Output transistor source (dummy)		-		-		
25	RDR	Reset transistor drain (right amplifier)	15	17	19	-0.3 to +25 V		
26	BG	Bias gate (see note 11)	0	0	2	±20 V		
27	SS	Substrate	0	9	10	-		
28	SØ1	Storage area clock	8	12	15	<u>+</u> 20 V		
29	SØ2	Storage area clock	8	12	15	<u>+</u> 20 V		
30	SØ3	Storage area clock	8	12	15	<u>+</u> 20 V		
31	ABG	Anti-blooming gate	0	0	5	<u>+</u> 20 V		
32	SS	Substrate	0	9	10	-		

Maximum voltages between pairs of pins:

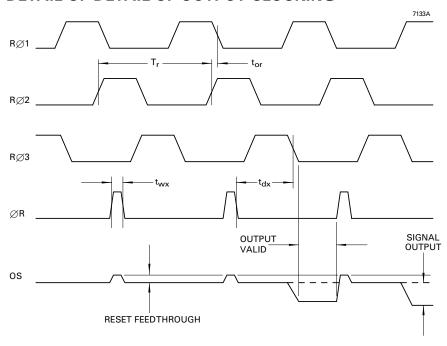

pin 10 (OSL) to pin 11 (ODL) \pm 15 V pin 22 (ODR) to pin 23 (OSR) . . . \pm 15 V Maximum output transistor current 10 mA

NOTES

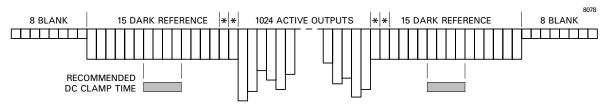

- 9. Clock low levels 0 \pm 0.5 V.
- 10. 3 to 5 V below OD. Connect to ground using a 2 to 5 mA current source or appropriate load resistor (typically 5 to 10 k Ω).
- 11. Adjust for output transistor bias current.
- 12. All devices will operate at the typical values given. However, some adjustment within the minimum to maximum range may be required for to optimise performance for critical applications. It should be noted that conditions for optimum performance may differ from device to device.
- 13. With the R \varnothing connections shown, the device will operate through the right-hand output only. In order to operate from both outputs R \varnothing 1(L) and R \varnothing 2(L) should be reversed.

100042, page 6 © e2v technologies

FRAME TRANSFER TIMING DIAGRAM



DETAIL OF LINE TRANSFER (For output from a single amplifier)



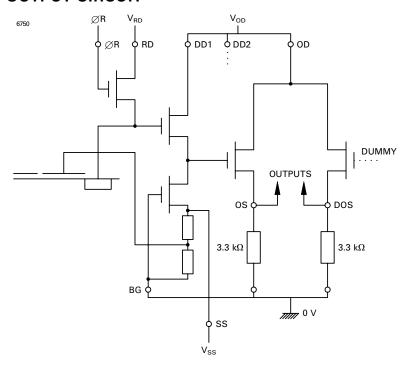
© e2v technologies 100042, page 7

DETAIL OF DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

^{* =} Partially shielded transition elements

CLOCK TIMING REQUIREMENTS

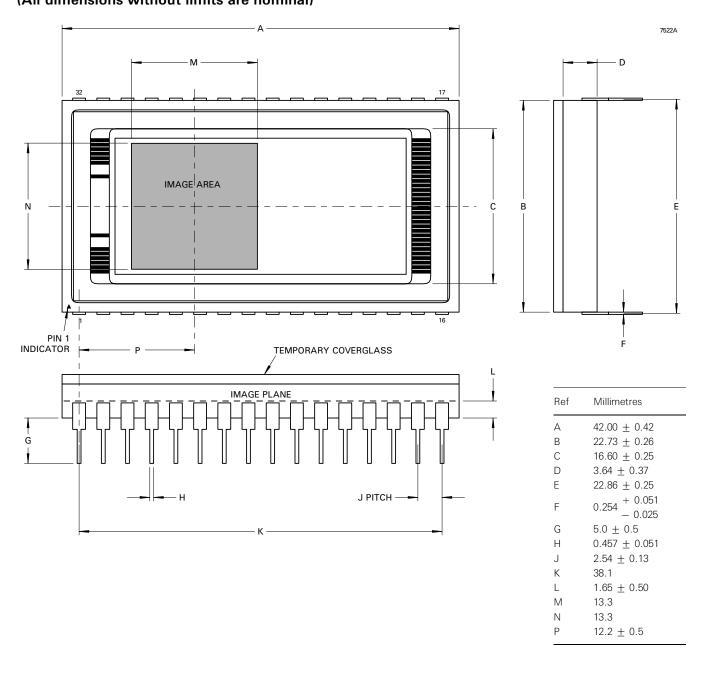

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	2	5	see note 14	μs
t _{wi}	Image clock pulse width	1	2.5	see note 14	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.1	0.5	0.2T _i	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	0.5	0.2T _i	μs
t _{oi}	Image clock pulse overlap	$(t_{ri} + t_{fi})/2$	0.5	0.2T _i	μs
t _{dir}	Delay time, SØ stop to RØ start	1	2	see note 14	μs
t _{dri}	Delay time, RØ stop to SØ start	1	1	see note 14	μs
T_r	Output register clock cycle period	100	1000	see note 14	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

- 14. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.
- 15. To minimise dark current, two of the IØ clocks should be held low during integration. IØ timing requirements are identical to SØ (as shown above).

100042, page 8 © e2v technologies

OUTPUT CIRCUIT



NOTES

16. 3.3 k Ω resistors shown connected to OS and DOS are external to the CCD.

© e2v technologies 100042, page 9

OUTLINE(All dimensions without limits are nominal)

100042, page 10 © e2v technologies

ORDERING INFORMATION

Options include:

- Permanent Quartz Window
- Temporary Glass Window
- Permanent Glass Window
- Fibre-optic Coupling
- UV Coating
- X-ray Phosphor Coating

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:-

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 3, 4, 5, 7, 13, 14, 15, 16, 17, 18, 19, 20, 26, 28, 29, 30, 31) but not to the other pins.

HIGH ENERGY RADIATION

Device characteristics will change when subject to ionising radiation.

Users planning to operate CCDs in high radiation environments are advised to contact e2v technologies.

TEMPERATURE LIMITS

									Min	Typical	Max	
Storage	Э								153	-	373	Κ
Operati	ng								153	243	323	Κ
Operati	on	or	sto	raç	ge ii	n h	um	id (conditio	ns may give	e rise to i	ce on
the sen	sor	SU	ırfa	се	on	СО	olir	ng,	causing	g irreversible	e damage	e.

Maximum device heating/cooling 5 K/min

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.