ezv technologies

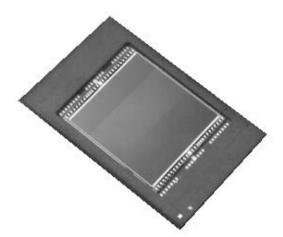
CCD55-30 Inverted Mode Sensor High Performance CCD Sensor

FEATURES

- 1252 (H) by 1152 (V) Pixel Format
- 28 by 26 mm Active Area
- Visible Light and X-Ray Sensitive
- New Improved Very Low Noise Amplifier for Slow-Scan Systems and Large Signal Amplifier for Binned Operation
- Symmetrical Anti-Static Gate Protection
- Radiation Tolerant
- Advanced Inverted Mode Operation
- Gated Dump Drain on Output Register

INTRODUCTION

The CCD55-30 is one of the CCD55 range of very large area CCD image sensors primarily intended to suit the requirements of astronomy, medical diagnostic and scientific measuring instruments. Standard three-phase clocking and buried channel charge transfer are employed. The device operates in the inverted mode for minimum dark current. The readout register has a high performance low noise amplifier at one end for slow-scan applications and a high speed amplifier at the other end. The image area is split into two sections which can be clocked separately for frame transfer operation.


The CCD55-30 is an upgraded version of the CCD05-30 with improved output amplifiers and is also available in backthinned format. The CCD55-30 is pin compatible with the CCD05-30, except that the top two amplifiers are not provided.

The CCD55-30 scientific image sensor is primarily specified for operation in a full-frame imaging mode with slow-scan readout from the whole image area through the low noise amplifier and is tested at a temperature of approximately 253 K.

Other operating modes are also possible, including use of the large signal amplifier (but at higher noise) and pixel binning. Potential users are invited to discuss their applications with e2v technologies to ensure optimum performance.

In common with all other e2v technologies CCD sensors, the CCD55-30 is available with a fibre-optic window or taper, a UV coating or a phosphor coating for hard X-ray detection.

Designers are advised to consult e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

(Low noise amplifier)

Pixel readout frequence	:y					20 -	6000	kHz
Output amplifier sensit	tivi	ty					. 3	$\mu V/e^-$
Peak signal							400	ke ⁻ /pixel
Dynamic range						133 (000:1	
Spectral range						420 -	1060	nm
Readout noise (at 253	Κ,	20	kН	z)			. 3	e ⁻ rms
Q.E. at 700 nm							45	%
Peak output voltage							. 1.2	V

GENERAL DATA

Format

Image region (section A) .		1252(H) x 576(V)	pixels
Image region (section B) .		1252(H) x 576(V)	pixels
Image area (sections A + B)		28.17 x 25.92	mm
Pixel pitch (row and column)		22.5 x 22.5	μm

Package

Outline dimensions									53.3 x 33.0 mm
Number of pins .									44
Inter-pin spacing			•						2.54 mm
Inter-row spacing									2.54 mm
Inner row spacing (acr	oss	se	nsc	or)				43.18 mm
Window									Ų
Mounting position			•	•	•	•	•	•	any

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

e2v technologies inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies-na.com

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	300k	400k	-	e ⁻ /pixel
Peak output voltage (unbinned): low noise amplifier large signal amplifier	-	1.2 0.48		V V
Dark signal at 293 K (see notes 2 and 3)	-	200	400	e ⁻ /pixel/s
Charge transfer efficiency (see note 4): parallel serial	-	99.9999 99.9993		% %
Output amplifier sensitivity: low noise amplifier large signal amplifier	2.0 0.8	3.0 1.2	4.0 1.6	μV/e ⁻ μV/e ⁻
Readout noise at 253 K (see notes 3 and 5) low noise amplifier, A2 large signal amplifier, A1	-	3 8	5 -	rms e ^{-/} pixel rms e ⁻ /pixel
Readout frequency (see note 6): low noise amplifier large signal amplifier	-	50 1000	6000 6000	kHz kHz
Response non-uniformity (std. deviation)	-	1	3	% of mean
Dark signal non-uniformity at 293 K (see notes 3 and 7) (std. deviation, $\sigma)$	-	80	160	e ⁻ /pixel/s
Output node capacity: low noise amplifier, A2 large signal amplifier, A1	-	600 1300		ke ⁻ ke ⁻

ELECTRICAL INTERFACE CHARACTERISTICS

	Min	Typical	Max	
Electrode capacitances (measured at mid-cl	ock level):			
A $ \emptyset$ or B $ \emptyset$ interphase	-	4.2	-	nF
C∅ interphase	-	110	-	pF
AØ1, BØ1 to SS	-	21	-	nF
AØ2, AØ3, BØ2, BØ3 to SS	-	8.4	-	nF
C \emptyset , each phase to SS/DD/DG (see note 8)	-	300	-	pF
Output impedances:	-			
Low noise amplifier (A2)	-	400	-	Ω
Large signal amplifier (A1)	-	250	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. The typical average (background) dark signal at any temperature T (kelvin) between 230 and 300 K is given by: $Q_d/Q_{d0} = 1.14 \times 10^6 T^3 e^{-9080/T}$

where $\ensuremath{Q_{d0}}$ is the dark current at 293 K. Note that this is

- typical performance and some variation may be seen between devices. Below 230 K additional dark current components with a weaker temperature dependence may become significant.
- 3. This test is carried out on all CCD55-30 sensors.
- 4. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 5. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 10 μ s integration period.
- 6. Readout above the values specified may be achieved but performance to the parameters given cannot be guaranteed.
- 7. Measured between 253 and 293 K, excluding white defects.
- 8. Capacitances when V_{SS} > 8 V.

BLEMISH SPECIFICATION

Traps	Pixels where charge is temporarily held. Traps are counted if they have a capacity greater than 200 e^- at 253 K.							
Slipped columns	Are counted if they have an amplitude greater than 200 $e^$							
Black spots	>10% contrast at half saturation, 253 K.							
White spots	Are counted when they have a generation rate 50 times the specified maximum dark signal generation rate at 293 K (measured between 233 and 273 K). The typical temperature dependence of white spot blemishes is different from that of the average dark signal and is given by: $O_d/O_{d0} = \ 122T^3 e^{-6400/T}$							
White column	A column which contains at least 9 white							

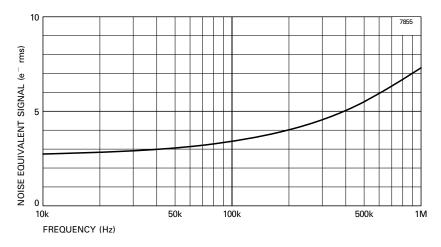
White column A column which contains at least 9 white defects.

Black column A column which contains at least 9 black defects.

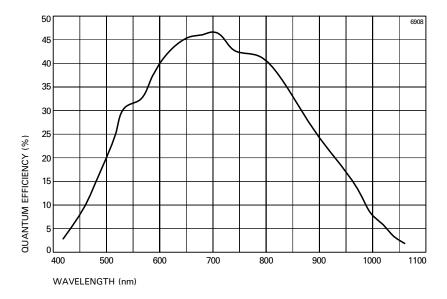
GRADE	0	1	2
Column defects: black or slipped white	0 0	2 0	6 0
Traps >200 e ⁻	2	5	12
White spots	42	42	65
Black spots	20	40	200

Grade 5

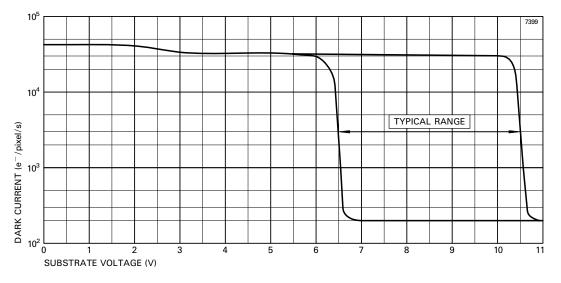
Devices which are fully functioning but with image quality below that of grade 2 and which may not meet all other performance parameters.

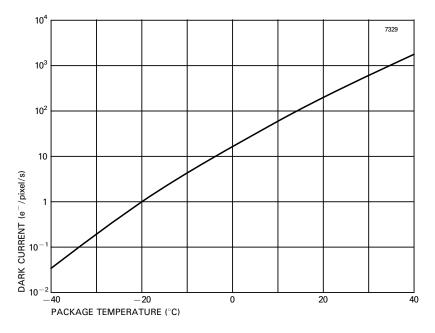

Minimum separation between

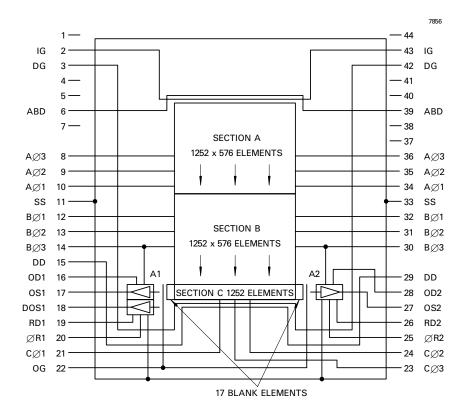
adjacent black columns 50 pixels


Note The effect of temperature on defects is that traps will be less noticeable at higher temperatures but more may appear below 253 K. The amplitude of white spots and columns will decrease rapidly with temperature.

TYPICAL OUTPUT CIRCUIT NOISE


(Low noise amplifier, measured using clamp and sample)


TYPICAL SPECTRAL RESPONSE (No window)

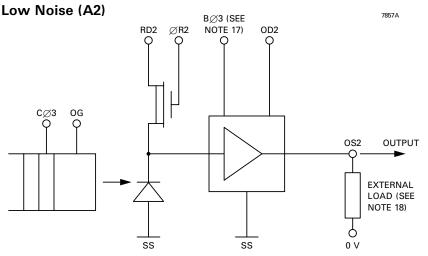


TYPICAL VARIATION OF DARK CURRENT WITH TEMPERATURE

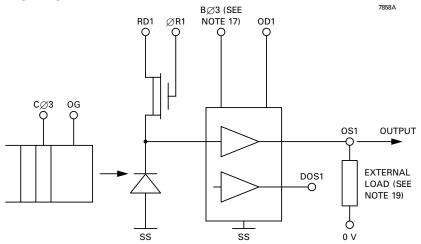
DEVICE SCHEMATIC

The charge detection amplifier A1 is optimised for large signal, high speed operation, whereas amplifier A2 is optimised for very low noise under cooled slow-scan operation.

PIN 1 2 3	REF					
1 2	nLF	DESCRIPTION	Min	VEL (V) (see Typical	note 9) Max	MAXIMUM RATINGS
2	-	No connection	-	Typical		with respect to V _{SS}
	- IG	Isolation gate (see note 10)	-5	- 0	- 1	- + 20 V
	DG	Dump gate (see note 11)	-5	0	1	±20 V
4	-	No connection	- 5	-	I	<u> </u>
5	_	No connection		_	_	-
6	ABD	Anti-blooming drain (see note 12)	20	22	25	-0.3 to +25 V
7	-	No connection		-	- 20	-0.5 to 1 25 v
8	- AØ3	Section A drive pulse	10	12	15	± 20 V
9	AØ2	Section A drive pulse	10	12	15	<u>+</u> 20 V
10	AØ2 AØ1	Section A drive pulse	10	12	15	±20 V
10	SS	Substrate (see note 13)	8	9.5	10.5	<u> 1 20 v</u>
12	BØ1	Substrate (see note 13) Section B drive pulse	10	12	10.5	±20 V
13	BØ2	Section B drive pulse	10	12	15	<u>+</u> 20 V
13	BØ3	Section B drive pulse	10	12	15	±20 V
15	DD	Dump drain	20	22	25	-0.3 to +25 V
16	OD1	Output drains (A1)	20	22	30	-0.3 to +23 V -0.3 to +30 V
17	001 0051	Output transistor source (A1)	27	see note 14	30	-0.3 to +30 V
17	DOS1	Dummy output source (A1)		see note 14		-0.3 to +30 V -0.3 to +30 V
19	RD1	Reset transistor drain (A1)	15	17	19	-0.3 to +35 V
20	ØR1	Output reset pulse (A1)	8	17	19	<u>+20 V</u>
20	CØ1	C register readout (see note 15)	10	12	15	±20 V
22	OGC	C register output gate (A1 and A2)	2	3	5	±20 V
22	CØ3	C register readout (see note 15)	10	12	15	±20 V
23	CØ3	C register readout (see note 15)	10	12	15	±20 V
25	ØR2	Output reset pulse (A2)	8	12	15	±20 V
26	RD2	Reset transistor drain (A2)	15	12	22	-0.3 to +25 V
20	OS2	Output transistor source (A2)	15	see note 16	ZZ	-0.3 to +30 V
28	032 0D2	Output transistor drain (A2)	27	29	30	-0.3 to +30 V
29	DD	Dump drain	20	23	25	-0.3 to +35 V
30		Section B drive pulse	10	12	15	<u>+20 V</u>
31	BØ3 BØ2	Section B drive pulse	10	12	15	±20 V
32	BØ1	Section B drive pulse	10	12	15	±20 V
33	SS	Substrate (see note 13)	8	9.5	10.5	<u> 1 20 v</u>
34	AØ1	Section A drive pulse	10	12	15	±20 V
35	AØ2	Section A drive pulse	10	12	15	<u>+</u> 20 V
36	AØ3	Section A drive pulse	10	12	15	<u>+</u> 20 V
37	-	No connection	-	-	-	<u> 1 20 v</u>
38	-	No connection	-	_		
39	- ABD	Anti-blooming drain (see note 12)	20	- 22	25	
40		No connection				-0.3 t0 +25 V
40	-	No connection	-	-	-	-
41	- DG	Dump gate (see note 11)	-5	- 0	- 1	 ± 20 V
	IG		-5	0	1	
43	-	Isolation gate (see note 10) No connection		-	-	±20 V

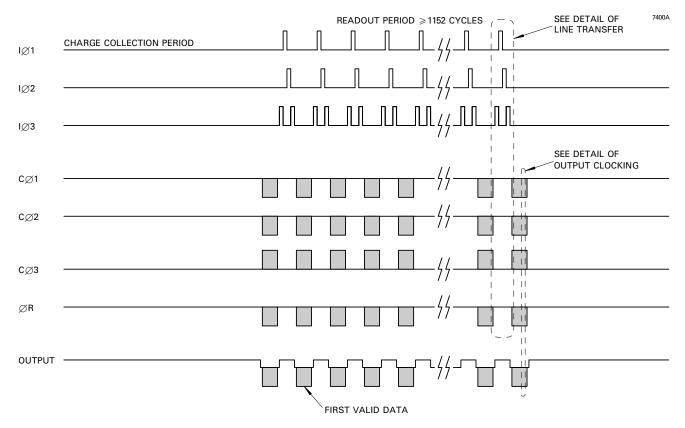

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

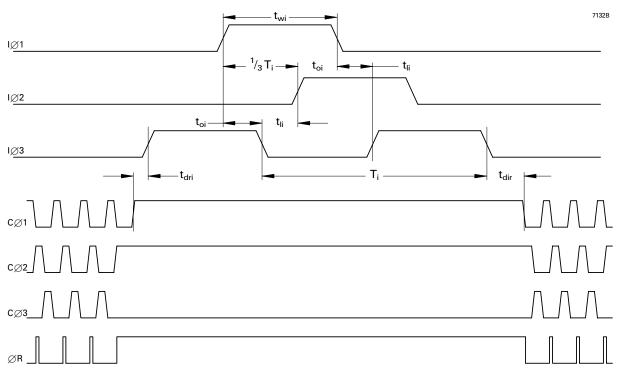
Voltages between pairs of pins:


pin 16 (OD1) to pin 17 (OS1) .						<u>+</u> 15	V
pin 16 (OD1) to pin 18 (DOS1)						<u>+</u> 15	V
pin 27 (OS2) to pin 28 (OD2) .						<u>+</u> 15	V
Current through OD1						20	mΑ
Current through any other source	e or	dra	in	pin		10	mΑ

Operation at the typical voltages should give performance at, or close to, the specification limits. Some adjustment within the specified range may be required to optimise performance.

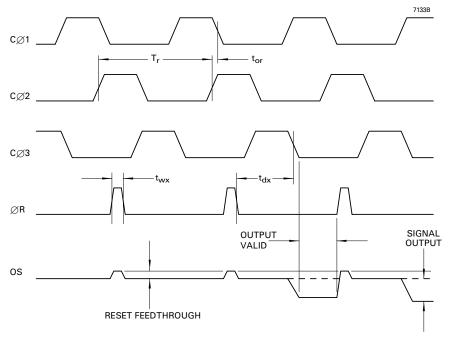
OUTPUT AMPLIFIER SCHEMATICS


Large Signal (A1)

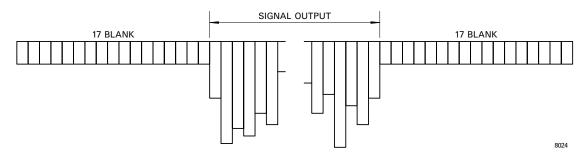

NOTES

- 9. All image clock low levels 0 \pm 0.5 V. Other clock low levels + 1 V.
- 10. Charge can be reverse clocked into the drain at the top of the device. During this period of clocking, V_{IG} should be 12 \pm 2 V.
- 11. Non-charge dumping level shown. For charge dumping, DG should be pulsed to 12 \pm 2 V.
- 12. The device has no antiblooming but a drain bus is present above section A and must be biased to prevent charge injection. The isolation gate is between this bus and the first $A \emptyset 1$ electrode.
- 13. The substrate voltage may need to be adjusted within the range indicated to achieve correct inverted mode operation.
- 14. With a 7.5 mA constant current load, $V_{OS} = V_{RD} + 6 V$.
- 15. Readout through amplifier 2 shown; for readout through amplifier 1, CØ1 and CØ2 should be interchanged.
- 16. With a 5 mA constant current load, V_{OS} = V_{RD} + 6 V.
- 17. The amplifier has a DC restoration circuit which is internally activated whenever $B\emptyset$ 3 is high.
- 18. Load not critical, can be 5 mA constant current supply or a 5 k $\!\Omega$ resistor.
- 19. Load not critical, can be 7.5 mA constant current supply or a 3.3 k $\!\Omega$ resistor.

FRAME READOUT TIMING DIAGRAM



DETAIL OF LINE TRANSFER



 $\textbf{Note} \quad | \not \oslash 1 \ = \ A \not \oslash 1 \ + \ B \not \oslash 1, \ | \not \oslash 2 \ = \ A \not \oslash 2 \ + \ B \not \oslash 2, \ | \not \oslash 3 \ = A \not \oslash 3 \ + \ B \not \oslash 3.$

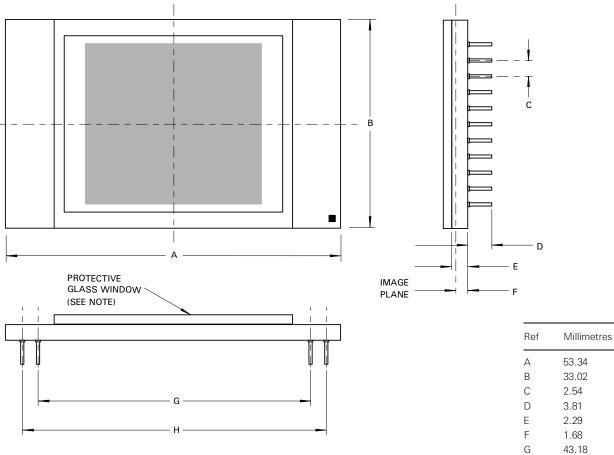
DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	15	30	see note 20	μs
t _{wi}	Image clock pulse width	7	15	see note 20	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.5	2	0.5t _{oi}	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	2	0.5t _{oi}	μs
t _{oi}	Image clock pulse overlap	3	5	0.2T _i	μs
t _{li}	Image clock pulse, two phase low	2	5	0.2T _i	μs
t _{dir}	Delay time, IØ stop to RØ start	3	5	see note 20	μs
t _{dri}	Delay time, RØ stop to IØ start	1	2	see note 20	μs
Tr	Output register clock cycle period	150	see note 21	see note 20	ns
t _{rr}	Clock pulse rise time (10 to 90%)	10	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	10	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	20	0.1T _r	0.2T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	10	0.5t _{rr}	0.2T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	25	0.5T _r	0.8T _r	ns

NOTES


20. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.

21. As set by the readout period.

OUTLINE (All dimensions nominal)

Not for inspection purposes

Outline Note

The device is normally supplied with a temporary glass window for protection purposes. It can also be supplied with a quartz or fibre-optic window where required.

PIN CONNECTIONS (View on Pins)

66	12A				PIN 1 IDENTIFIER							
										1		
43	o	0	44				2	0	0	1		
41	0	0	42				4	0	0	3		
39	0	0	40				6	0	0	5		
37	0	0	38				8	0	0	7		
35	0	0	36				10	0	0	9		
33	0	0	34				12	0	0	11		
31	0	0	32				14	0	0	13		
29	0	0	30				16	0	0	15		
27	0	0	28				18	0	0	17		
25	0	0	26				20	0	0	19		
23	0	0	24				22	0	0	21		
I										1		

48.26

Н

ORDERING INFORMATION

Options include:

- Temporary Quartz Window
- Temporary Glass Window
- Fibre-optic Coupling
- UV Coating
- X-ray Phosphor Coating
- Backthinned

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty.

HIGH ENERGY RADIATION

Device characteristics will change when subject to ionising radiation.

Users planning to operate CCDs in high radiation environments are advised to contact e2v technologies.

TEMPERATURE LIMITS

	Min	Typical	Max						
Storage	. 153	-	373	Κ					
Operating	. 153	253	323	Κ					
Operation or storage in humid conditions may give rise to ice on									
the sensor surface on cooling, causing irreversible damage.									
				, ·					

Maximum device heating/cooling 5 K/min

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.